Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Clin Infect Dis ; 2022 May 11.
Article in English | MEDLINE | ID: covidwho-2318240

ABSTRACT

BACKGROUND: Waning antibody levels post-vaccination and the emergence of variants of concern (VOCs) capable of evading protective immunity has raised the need for booster vaccinations. However, which combination of COVID-19 vaccines offers the strongest immune response against Omicron variant is unknown. METHODS: This randomized, subject-blinded, controlled trial assessed the reactogenicity and immunogenicity of different COVID-19 vaccine booster combinations. 100 BNT162b2-vaccinated individuals were enrolled and randomized 1: 1 to either homologous (BNT162b2 + BNT162b2 + BNT162b2; 'BBB') or heterologous mRNA booster vaccine (BNT162b2 + BNT162b2 + mRNA-1273; 'BBM'). Primary endpoint was the level of neutralizing antibodies against SARS-CoV-2 wild-type and VOCs at Day 28. RESULTS: 51 participants were allocated to BBB and 49 to BBM; 50 and 48 respectively were analyzed for safety and immunogenicity outcomes. At Day 28 post-boost, mean SARS-CoV-2 spike antibody titers were lower with BBB (22,382  IU/mL 95% CI, 18,210 to 27,517) vs BBM (29,751  IU/mL 95% CI, 25,281 to 35,011, p = 0.034) as was the median level of neutralizing antibodies: BBB 99.0% (IQR 97.9 to 99.3%) vs BBM 99.3% (IQR 98.8 to 99.5%, p = 0.021). On sub-group analysis, significant differences in mean spike antibody titer and live Omicron neutralization titer was only observed in older adults. Median surrogate neutralizing antibody level against all VOCs was also significantly higher with BBM in older adults, and against Omicron was BBB 72.8% (IQR 54.0 to 84.7%) vs BBM 84.3% (IQR 78.1 to 88.7%, p = 0.0073). Both vaccines were well tolerated. CONCLUSIONS: Heterologous mRNA-1273 booster vaccination induced a stronger neutralizing response against the Omicron variant in older individuals compared with homologous BNT123b2.

2.
Pathogens ; 12(3)2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2254808

ABSTRACT

OBJECTIVE: Abnormal liver tests have been associated with worse clinical outcomes in patients infected with COVID-19. This retrospective observational study from Singapore aims to elucidate simple clinical predictors of abnormal alanine aminotransferase (ALT) in COVID-19 infections. DESIGN: 717 patients hospitalised with COVID-19 at the National Centre for Infectious Diseases (NCID), Singapore, from 23 January-15 April 2020 were screened, of which 163 patients with baseline normal alanine transferase (ALT) and at least two subsequent ALTs performed were included in the final analysis. Information on baseline demographics, clinical characteristics and biochemical laboratory tests were collected. RESULTS: 30.7% of patients developed abnormal ALT. They were more likely to be older (60 vs. 55, p = 0.022) and have comorbidities of hyperlipidaemia and hypertension. The multivariate logistic regression showed that R-factor ≥1 on admission (adjusted odds ratio (aOR) 3.13, 95% Confidence Interval (CI) 1.41-6.95) and hypoxia (aOR 3.54, 95% CI 1.29-9.69) were independent risk factors for developing abnormal ALT. The patients who developed abnormal ALT also ran a more severe course of illness with a greater proportion needing supplementary oxygen (58% vs. 18.6%, p < 0.0005), admission to the Intensive Care Unit (ICU)/High Dependency Unit (HDU) (32% vs. 11.5%, p = 0.003) and intubation (20% vs. 2.7%, p < 0.0005). There was no difference in death rate between the two groups. CONCLUSIONS: Liver injury is associated with poor clinical outcomes in patients with COVID-19. R-factor ≥1 on admission and hypoxia are independent simple clinical predictors for developing abnormal ALT in COVID-19.

4.
Am J Respir Crit Care Med ; 206(6): 730-739, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2257568

ABSTRACT

Rationale: Uncertainty regarding the natural history of coronavirus disease (COVID-19) led to difficulty in efficacy endpoint selection for therapeutic trials. Capturing outcomes that occur after hospital discharge may improve assessment of clinical recovery among hospitalized patients with COVID-19. Objectives: Evaluate 90-day clinical course of patients hospitalized with COVID-19, comparing three distinct definitions of recovery. Methods: We used pooled data from three clinical trials of neutralizing monoclonal antibodies to compare: 1) the hospital discharge approach; 2) the TICO (Therapeutics for Inpatients with COVID-19) trials sustained recovery approach; and 3) a comprehensive approach. At the time of enrollment, all patients were hospitalized in a non-ICU setting without organ failure or major extrapulmonary manifestations of COVID-19. We defined discordance as a difference between time to recovery. Measurements and Main Results: Discordance between the hospital discharge and comprehensive approaches occurred in 170 (20%) of 850 enrolled participants, including 126 hospital readmissions and 24 deaths after initial hospital discharge. Discordant participants were older (median age, 68 vs. 59 years; P < 0.001) and more had a comorbidity (84% vs. 70%; P < 0.001). Of 170 discordant participants, 106 (62%) had postdischarge events captured by the TICO approach. Conclusions: Among patients hospitalized with COVID-19, 20% had clinically significant postdischarge events within 90 days after randomization in patients who would be considered "recovered" using the hospital discharge approach. Using the TICO approach balances length of follow-up with practical limitations. However, clinical trials of COVID-19 therapeutics should use follow-up times up to 90 days to assess clinical recovery more accurately.


Subject(s)
COVID-19 , Aftercare , Aged , Antibodies, Monoclonal , Humans , Patient Discharge , SARS-CoV-2 , Treatment Outcome
5.
J Med Virol ; : e28258, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2244711

ABSTRACT

Waning antibody levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern highlight the need for booster vaccinations. This is particularly important for the elderly population, who are at a higher risk of developing severe coronavirus disease 2019 (COVID-19) disease. While studies have shown increased antibody responses following booster vaccination, understanding the changes in T and B cell compartments induced by a third vaccine dose remains limited. We analyzed the humoral and cellular responses in subjects who received either a homologous messenger RNA(mRNA) booster vaccine (BNT162b2 + BNT162b2 + BNT162b2; ''BBB") or a heterologous mRNA booster vaccine (BNT162b2 + BNT162b2 + mRNA-1273; ''BBM") at Day 0 (prebooster), Day 7, and Day 28 (postbooster). Compared with BBB, elderly individuals (≥60 years old) who received the BBM vaccination regimen display higher levels of neutralizing antibodies against the Wuhan and Delta strains along with a higher boost in immunoglobulin G memory B cells, particularly against the Omicron variant. Circulating T helper type 1(Th1), Th2, Th17, and T follicular helper responses were also increased in elderly individuals given the BBM regimen. While mRNA vaccines increase antibody, T cell, and B cell responses against SARS-CoV-2 1 month after receiving the third dose booster, the efficacy of the booster vaccine strategies may vary depending on age group and regimen combination.

6.
Cell Rep Med ; 3(11): 100793, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2061977

ABSTRACT

Unlike mRNA vaccines based only on the spike protein, inactivated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines should induce a diversified T cell response recognizing distinct structural proteins. Here, we perform a comparative analysis of SARS-CoV-2-specific T cells in healthy individuals following vaccination with inactivated SARS-CoV-2 or mRNA vaccines. Relative to spike mRNA vaccination, inactivated vaccines elicit a lower magnitude of spike-specific T cells, but the combination of membrane, nucleoprotein, and spike-specific T cell response is quantitatively comparable with the sole spike T cell response induced by mRNA vaccine, and they efficiently tolerate the mutations characterizing the Omicron lineage. However, this multi-protein-specific T cell response is not mediated by a coordinated CD4 and CD8 T cell expansion but by selective priming of CD4 T cells. These findings can help in understanding the role of CD4 and CD8 T cells in the efficacy of the different vaccines to control severe COVID-19 after Omicron infection.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , Viral Vaccines/genetics , RNA, Messenger/genetics , COVID-19/prevention & control
7.
Nat Microbiol ; 7(11): 1756-1761, 2022 11.
Article in English | MEDLINE | ID: covidwho-2050395

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529 lineage) escapes antibodies that neutralize the ancestral virus. We tested human serum panels from participants with differing infection and vaccination status using a multiplex surrogate virus neutralization assay targeting 20 sarbecoviruses. We found that bat and pangolin sarbecoviruses showed significantly less neutralization escape than the Omicron variant. We propose that SARS-CoV-2 variants have emerged under immune selection pressure and are evolving differently from animal sarbecoviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins , Antibodies, Viral , Membrane Glycoproteins
8.
Microbiol Spectr ; 10(5): e0225722, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019797

ABSTRACT

As the COVID-19 pandemic continues, countries around the world are switching toward vaccinations and boosters to combat the pandemic. However, waning immunity against SARS-CoV-2 wild-type (WT) and variants have been widely reported. Booster vaccinations have shown to be able to increase immunological protection against new variants; however, the protection observed appears to decrease quickly over time suggesting a second booster shot may be appropriate. Moreover, heterogeneity and waning of the immune response at the individual level was observed suggesting a more personalized vaccination approach should be considered. To evaluate such a personalized strategy, it is important to have the ability to rapidly evaluate the level of neutralizing antibody (nAbs) response against variants at the individual level and ideally at a point of care setting. Here, we applied the recently developed cellulose pulled-down virus neutralization test (cpVNT) to rapidly assess individual nAb levels to WT and variants of concerns in response to booster vaccination. Our findings confirmed significant heterogeneity of nAb responses against a panel of SARS-CoV-2 variants, and indicated a strong increase in nAb response against variants of concern (VOCs) upon booster vaccination. For instance, the nAb response against current predominant omicron variant was observed with medians of 88.1% (n = 6, 95% CI = 73.2% to 96.2%) within 1-month postbooster and 70.7% (n = 22, 95% CI = 66.4% to 81.8%) 3 months postbooster. Our data show a point of care (POC) test focusing on nAb response levels against VOCs can guide decisions on the potential need for booster vaccinations at individual level. Importantly, it also suggests the current booster vaccines only give a transient protective response against some VOC and new more targeted formulations of a booster vaccine against specific VOC may need to be developed in the future. IMPORTANCE Vaccination against SARS-CoV-2 induces protection through production of neutralization antibodies (nAb). The level of nAb is a major indicator of immunity against SARS-CoV-2 infection. We developed a rapid point-of-care test that can monitor the nAb level from a drop of finger stick blood. Here, we have implemented the test to monitor individual nAb level against wild-type and variants of SARS-CoV-2 at various time points of vaccination, including post-second-dose vaccination and postbooster vaccination. Huge diversity of nAb levels were observed among individuals as well as increment in nAb levels especially against Omicron variant after booster vaccination. This study evaluated the performance of this point-of-care test for personalized nAb response tracking. It verifies the potential of using a rapid nAb test to guide future vaccination regimens at both the individual and population level.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2/genetics , Antibodies, Viral , Pandemics , COVID-19/prevention & control , Antibodies, Neutralizing , Vaccination
9.
Ann Intern Med ; 175(9): 1266-1274, 2022 09.
Article in English | MEDLINE | ID: covidwho-2006470

ABSTRACT

BACKGROUND: Ensovibep (MP0420) is a designed ankyrin repeat protein, a novel class of engineered proteins, under investigation as a treatment of SARS-CoV-2 infection. OBJECTIVE: To investigate if ensovibep, in addition to remdesivir and other standard care, improves clinical outcomes among patients hospitalized with COVID-19 compared with standard care alone. DESIGN: Double-blind, randomized, placebo-controlled, clinical trial. (ClinicalTrials.gov: NCT04501978). SETTING: Multinational, multicenter trial. PARTICIPANTS: Adults hospitalized with COVID-19. INTERVENTION: Intravenous ensovibep, 600 mg, or placebo. MEASUREMENTS: Ensovibep was assessed for early futility on the basis of pulmonary ordinal scores at day 5. The primary outcome was time to sustained recovery through day 90, defined as 14 consecutive days at home or place of usual residence after hospital discharge. A composite safety outcome that included death, serious adverse events, end-organ disease, and serious infections was assessed through day 90. RESULTS: An independent data and safety monitoring board recommended that enrollment be halted for early futility after 485 patients were randomly assigned and received an infusion of ensovibep (n = 247) or placebo (n = 238). The odds ratio (OR) for a more favorable pulmonary outcome in the ensovibep (vs. placebo) group at day 5 was 0.93 (95% CI, 0.67 to 1.30; P = 0.68; OR > 1 would favor ensovibep). The 90-day cumulative incidence of sustained recovery was 82% for ensovibep and 80% for placebo (subhazard ratio [sHR], 1.06 [CI, 0.88 to 1.28]; sHR > 1 would favor ensovibep). The primary composite safety outcome at day 90 occurred in 78 ensovibep participants (32%) and 70 placebo participants (29%) (HR, 1.07 [CI, 0.77 to 1.47]; HR < 1 would favor ensovibep). LIMITATION: The trial was prematurely stopped because of futility, limiting power for the primary outcome. CONCLUSION: Compared with placebo, ensovibep did not improve clinical outcomes for hospitalized participants with COVID-19 receiving standard care, including remdesivir; no safety concerns were identified. PRIMARY FUNDING SOURCE: National Institutes of Health.


Subject(s)
COVID-19 Drug Treatment , Adult , Designed Ankyrin Repeat Proteins , Double-Blind Method , Humans , Recombinant Fusion Proteins , SARS-CoV-2 , Treatment Outcome
11.
Trials ; 23(1): 498, 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1962883

ABSTRACT

BACKGROUND: Over 2021, COVID-19 vaccination programs worldwide focused on raising population immunity through the primary COVID-19 vaccine series. In Singapore, two mRNA vaccines (BNT162b2 and mRNA-1273) and the inactivated vaccine CoronaVac are currently authorized under the National Vaccination Programme for use as the primary vaccination series. More than 90% of the Singapore population has received at least one dose of a COVID-19 vaccine as of December 2021. With the demonstration that vaccine effectiveness wanes in the months after vaccination, and the emergence of Omicron which evades host immunity from prior infection and/or vaccination, attention in many countries has shifted to how best to maintain immunity through booster vaccinations. METHODS: The objectives of this phase 3, randomized, subject-blinded, controlled clinical trial are to assess the safety and immunogenicity of heterologous boost COVID-19 vaccine regimens (intervention groups 1-4) compared with a homologous boost regimen (control arm) in up to 600 adult volunteers. As non-mRNA vaccine candidates may enter the study at different time points depending on vaccine availability and local regulatory approval, participants will be randomized at equal probability to the available intervention arms at the time of randomization. Eligible participants will have received two doses of a homologous mRNA vaccine series with BNT162b2 or mRNA-1273 at least 6 months prior to enrolment. Participants will be excluded if they have a history of confirmed SARS or SARS-CoV-2 infection, are immunocompromised, or are pregnant. Participants will be monitored for adverse events and serious adverse events by physical examinations, laboratory tests and self-reporting. Blood samples will be collected at serial time points [pre-vaccination/screening (day - 14 to day 0), day 7, day 28, day 180, day 360 post-vaccination] for assessment of antibody and cellular immune parameters. Primary endpoint is the level of anti-SARS-CoV-2 spike immunoglobulins at day 28 post-booster and will be measured against wildtype SARS-CoV-2 and variants of concern. Comprehensive immune profiling of the humoral and cellular immune response to vaccination will be performed. DISCUSSION: This study will provide necessary data to understand the quantity, quality, and persistence of the immune response to a homologous and heterologous third booster dose of COVID-19 vaccines. This is an important step in developing COVID-19 vaccination programs beyond the primary series. TRIAL REGISTRATION: ClinicalTrials.gov NCT05142319 . Registered on 2 Dec 2021.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase III as Topic , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
12.
Bioengineering & Translational Medicine ; 7(2), 2022.
Article in English | ProQuest Central | ID: covidwho-1848906

ABSTRACT

There is clinical need for a quantifiable point‐of‐care (PoC) SARS‐CoV‐2 neutralizing antibody (nAb) test that is adaptable with the pandemic's changing landscape. Here, we present a rapid and semi‐quantitative nAb test that uses finger stick or venous blood to assess the nAb response of vaccinated population against wild‐type (WT), alpha, beta, gamma, and delta variant RBDs. It captures a clinically relevant range of nAb levels, and effectively differentiates prevaccination, post first dose, and post second dose vaccination samples within 10 min. The data observed against alpha, beta, gamma, and delta variants agrees with published results evaluated in established serology tests. Finally, our test revealed a substantial reduction in nAb level for beta, gamma, and delta variants between early BNT162b2 vaccination group (within 3 months) and later vaccination group (post 3 months). This test is highly suited for PoC settings and provides an insightful nAb response in a postvaccinated population.

13.
Antibiotics (Basel) ; 11(3)2022 Mar 05.
Article in English | MEDLINE | ID: covidwho-1731895

ABSTRACT

Data on use of monoclonal antibodies (mAbs) in hospitalized patients are limited. In this cross-sectional study, we evaluated the use of mAbs for early treatment of unvaccinated hospitalized patients with mild-to-moderate COVID-19. All inpatients at our center were screened on 27 October 2021. Primary outcome was in-hospital deterioration as defined by a composite of oxygen requirement, intensive care unit (ICU) admission, or mortality within 28 days of admission. Ninety-four out of 410 COVID-19 inpatients were included in the final analysis, of whom 19 (20.2%) received early treatment with sotrovimab. The median age was 73 years (IQR 61-83), and 35 (37.2%) were female. Although the treatment group was significantly older and had more comorbidities, there was a lower proportion of progression to oxygen requirement (31.6% vs. 54.7%), ICU admission (10.5% vs. 24.0%), or mortality (5.3% vs. 13.3%). Kaplan-Meier curves showed a significant difference in time to in-hospital deterioration (log-rank test, p = 0.043). Cox proportional hazards model for in-hospital deterioration showed that sotrovimab treatment was protective (hazard ratio, 0.41; 95% CI, 0.17-0.99; p = 0.047) after adjustment for baseline ISARIC deterioration score. Our findings support the use of sotrovimab for early treatment in hospitalized patients with mild-to-moderate COVID-19 at a high risk of disease progression.

14.
Antibiotics (Basel) ; 11(2)2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1667025

ABSTRACT

BACKGROUND: COVID-19 imposes challenges in antibiotic decision-making due to similarities between bacterial pneumonia and moderate to severe COVID-19. We evaluated the effects of antibiotic therapy on the clinical outcomes of COVID-19 pneumonia patients and diagnostic accuracy of key inflammatory markers to inform antibiotic decision-making. METHODS: An observational cohort study was conducted in patients hospitalised with COVID-19 at the National Centre for Infectious Diseases and Tan Tock Seng Hospital, Singapore, from January to April 2020. Patients were defined as receiving empiric antibiotic treatment for COVID-19 if started within 3 days of diagnosis. RESULTS: Of 717 patients included, 86 (12.0%) were treated with antibiotics and 26 (3.6%) had documented bacterial infections. Among 278 patients with COVID-19 pneumonia, those treated with antibiotics had more diarrhoea (26, 34.7% vs. 24, 11.8%, p < 0.01), while subsequent admissions to the intensive care unit were not lower (6, 8.0% vs. 10, 4.9% p = 0.384). Antibiotic treatment was not independently associated with lower 30-day (adjusted odds ratio, aOR 19.528, 95% confidence interval, CI 1.039-367.021) or in-hospital mortality (aOR 3.870, 95% CI 0.433-34.625) rates after adjusting for age, co-morbidities and severity of COVID-19 illness. Compared to white cell count and procalcitonin level, the C-reactive protein level had the best diagnostic accuracy for documented bacterial infections (area under the curve, AUC of 0.822). However, the sensitivity and specificity were less than 90%. CONCLUSION: Empiric antibiotic use in those presenting with COVID-19 pneumonia did not prevent deterioration or mortality. More studies are needed to evaluate strategies to diagnose bacterial co-infections in these patients.

15.
Front Immunol ; 12: 710217, 2021.
Article in English | MEDLINE | ID: covidwho-1555700

ABSTRACT

Severe SARS-CoV-2 infection can trigger uncontrolled innate and adaptive immune responses, which are commonly associated with lymphopenia and increased neutrophil counts. However, whether the immune abnormalities observed in mild to severely infected patients persist into convalescence remains unclear. Herein, comparisons were drawn between the immune responses of COVID-19 infected and convalescent adults. Strikingly, survivors of severe COVID-19 had decreased proportions of NKT and Vδ2 T cells, and increased proportions of low-density neutrophils, IgA+/CD86+/CD123+ non-classical monocytes and hyperactivated HLADR+CD38+ CD8+ T cells, and elevated levels of pro-inflammatory cytokines such as hepatocyte growth factor and vascular endothelial growth factor A, long after virus clearance. Our study suggests potential immune correlates of "long COVID-19", and defines key cells and cytokines that delineate true and quasi-convalescent states.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , COVID-19/complications , Cohort Studies , Convalescence , Female , Humans , Male , Middle Aged , Post-Acute COVID-19 Syndrome
16.
Clin Infect Dis ; 73(9): e2932-e2942, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500989

ABSTRACT

BACKGROUND: Key knowledge gaps remain in the understanding of viral dynamics and immune response of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. METHODS: We evaluated these characteristics and established their association with clinical severity in a prospective observational cohort study of 100 patients with PCR-confirmed SARS-CoV-2 infection (mean age, 46 years; 56% male; 38% with comorbidities). Respiratory samples (n = 74) were collected for viral culture, serum samples for measurement of IgM/IgG levels (n = 30), and plasma samples for levels of inflammatory cytokines and chemokines (n = 81). Disease severity was correlated with results from viral culture, serologic testing, and immune markers. RESULTS: Fifty-seven (57%) patients developed viral pneumonia, of whom 20 (20%) required supplemental oxygen, including 12 (12%) with invasive mechanical ventilation. Viral culture from respiratory samples was positive for 19 of 74 patients (26%). No virus was isolated when the PCR cycle threshold (Ct) value was >30 or >14 days after symptom onset. Seroconversion occurred at a median (IQR) of 12.5 (9-18) days for IgM and 15.0 (12-20) days for IgG; 54/62 patients (87.1%) sampled at day 14 or later seroconverted. Severe infections were associated with earlier seroconversion and higher peak IgM and IgG levels. Levels of IP-10, HGF, IL-6, MCP-1, MIP-1α, IL-12p70, IL-18, VEGF-A, PDGF-BB, and IL-1RA significantly correlated with disease severity. CONCLUSIONS: We found virus viability was associated with lower PCR Ct value in early illness. A stronger antibody response was associated with disease severity. The overactive proinflammatory immune signatures offer targets for host-directed immunotherapy, which should be evaluated in randomized controlled trials.


Subject(s)
COVID-19 , Pneumonia, Viral , Antibodies, Viral , Female , Humans , Immunoglobulin M , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Seroconversion
17.
J Clin Invest ; 131(17)2021 09 01.
Article in English | MEDLINE | ID: covidwho-1463086

ABSTRACT

Defining the correlates of protection necessary to manage the COVID-19 pandemic requires the analysis of both antibody and T cell parameters, but the complexity of traditional tests limits virus-specific T cell measurements. We tested the sensitivity and performance of a simple and rapid SARS-CoV-2 spike protein-specific T cell test based on the stimulation of whole blood with peptides covering the SARS-CoV-2 spike protein, followed by cytokine (IFN-γ, IL-2) measurement in different cohorts including BNT162b2-vaccinated individuals (n = 112), convalescent asymptomatic and symptomatic COVID-19 patients (n = 130), and SARS-CoV-1-convalescent individuals (n = 12). The sensitivity of this rapid test is comparable to that of traditional methods of T cell analysis (ELISPOT, activation-induced marker). Using this test, we observed a similar mean magnitude of T cell responses between the vaccinees and SARS-CoV-2 convalescents 3 months after vaccination or virus priming. However, a wide heterogeneity of the magnitude of spike-specific T cell responses characterized the individual responses, irrespective of the time of analysis. The magnitude of these spike-specific T cell responses cannot be predicted from the neutralizing antibody levels. Hence, both humoral and cellular spike-specific immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 , Immunity, Cellular/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Adult , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
Clin Trials ; 19(1): 52-61, 2022 02.
Article in English | MEDLINE | ID: covidwho-1463193

ABSTRACT

BACKGROUND/AIMS: Safe and effective therapies for COVID-19 are urgently needed. In order to meet this need, the Accelerating COVID-19 Therapeutic Interventions and Vaccines public-private partnership initiated the Therapeutics for Inpatients with COVID-19. Therapeutics for Inpatients with COVID-19 is a multi-arm, multi-stage platform master protocol, which facilitates the rapid evaluation of the safety and efficacy of novel candidate antiviral therapeutic agents for adults hospitalized with COVID-19. Five agents have so far entered the protocol, with rapid answers already provided for three of these. Other agents are expected to enter the protocol throughout 2021. This protocol contains a number of key design and implementation features that, along with challenges faced by the protocol team, are presented and discussed. METHODS: Three clinical trial networks, encompassing a global network of clinical sites, participated in the protocol development and implementation. Therapeutics for Inpatients with COVID-19 utilizes a multi-arm, multi-stage design with an agile and robust approach to futility and safety evaluation at 300 patients enrolled, with subsequent expansion to full sample size and an expanded target population if the agent shows an acceptable safety profile and evidence of efficacy. Rapid recruitment to multiple agents is enabled through the sharing of placebo, the confining of agent-specific information to protocol appendices, and modular consent forms. In collaboration with the Food and Drug Administration, a thorough safety data collection and Data and Safety Monitoring Board schedule was developed for the study of potential therapeutic agents with limited in-human data in hospitalized patients with COVID-19. RESULTS: As of 8 August 2021, five agents have entered the Therapeutics for Inpatients with COVID-19 master protocol and a total of 1909 participants have been randomized to one of these agents or matching placebo. There were a number of challenges faced by the study team that needed to be overcome in order to successfully implement Therapeutics for Inpatients with COVID-19 across a global network of sites. These included ensuring drug supply and reliable recruitment allowing for changing infection rates across the global network of sites, the need to balance the collection of data and samples without overburdening clinical staff and obtaining regulatory approvals across a global network of sites. CONCLUSION: Through a robust multi-network partnership, the Therapeutics for Inpatients with COVID-19 protocol has been successfully used across a global network of sites for rapid generation of efficacy data on multiple novel antiviral agents. The protocol design and implementation features used in this protocol, and the approaches to address challenges, will have broader applicability. Mechanisms to facilitate improved communication and harmonization among country-specific regulatory bodies are required to achieve the full potential of this approach in dealing with a global outbreak.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Adult , Antiviral Agents/therapeutic use , Hospitalization , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Treatment Outcome
20.
N Engl J Med ; 385(15): 1401-1406, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1361670

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern pose a challenge to the effectiveness of current vaccines. A vaccine that could prevent infection caused by known and future variants of concern as well as infection with pre-emergent sarbecoviruses (i.e., those with potential to cause disease in humans in the future) would be ideal. Here we provide data showing that potent cross-clade pan-sarbecovirus neutralizing antibodies are induced in survivors of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) infection who have been immunized with the BNT162b2 messenger RNA (mRNA) vaccine. The antibodies are high-level and broad-spectrum, capable of neutralizing not only known variants of concern but also sarbecoviruses that have been identified in bats and pangolins and that have the potential to cause human infection. These findings show the feasibility of a pan-sarbecovirus vaccine strategy. (Funded by the Singapore National Research Foundation and National Medical Research Council.).


Subject(s)
Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , B-Lymphocytes , BNT162 Vaccine , Humans , Immunogenicity, Vaccine , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Survivors
SELECTION OF CITATIONS
SEARCH DETAIL